2-Diazoacethydrazide derivatives and their ring-chain transformations

Yury A. Rosin,^a Elena A. Vorob'eva,^a Yury Yu. Morzherin,^a Alexander C. Yakimov,^a Wim Dehaen^b and Vasiliy A. Bakulev*^a

^a Urals State Technical University, 620002 Ekaterinburg, Russian Federation. Fax: +7 3432 74 5483; e-mail: crocus@htf.ustu.ru

1-Amino-1,2,3-triazol-5-olates 6, 13 and 14 have been obtained by the introduction of a diazo group into N-benzylidene-protected hydrazides of cyanoacetic and malonic acids. These compounds form open-chain isomers of 1-amino-5-hydroxy-1,2,3-triazoles upon acidification with an aqueous solution of HCl. Compounds 8, 15 and 16 are the first examples of the group of α -diazoacethydrazides.

 α -Diazoacetamides and the products of their cyclisation, 5-hydroxy-1,2,3-triazoles, have been extensively studied,^{1,2} though until this report, the relevant literature has carried no examples of diazo compounds containing the hydrazide group in the α -position. This paper presents data on the synthesis of the first examples of 2-diazoacethydrazides and derivatives of their cyclic isomers, 1-amino-1,2,3-triazoles.

We showed previously³ that the interaction of 2-amino-2-cyanoacethydrazide **1** with sodium nitrite in an aqueous solution of hydrochloric acid (or with alkyl nitrites in glacial acetic acid) proceeds simultaneously at the amino and hydrazide groups with the formation of 2-diazo-2-cyanoacetazide. To carry out the reaction selectively at the amino group, we protected of the hydrazide group with *N*-benzylidene.

$$NC \longrightarrow NHNH_{2} \qquad i \qquad NC \longrightarrow NH_{2} \qquad NHNH_{2} \qquad ii$$

$$1 \qquad \qquad 2$$

$$NC \longrightarrow NHNH_{2} \qquad iii \qquad NC \longrightarrow NH_{2} \qquad NC \longrightarrow NHNH_{2} \qquad NC \longrightarrow NHH_{2} \qquad$$

Scheme 1 Reagents and conditions: i, PhCHO, EtOH, 20 °C; ii, Bu¹ONO, AcOH, 10 °C; iii, 20 °C, 24 h in DMSO or CHCl₃; iv, H₂NNH₂, EtOH, 78 °C, 12 h; v, HCl, H₂O, 0–10 °C.

Interaction of hydrazide **1** with benzaldehyde leads to smooth formation of hydrazone **2**. Reaction of **2** with butyl nitrite in glacial acetic acid yields *N*-benzylidene-2-diazo-2-cyanoacethydrazide **3**. We found that this compound was unstable in organic solvents and underwent slow cyclisation to 1-benzylidene-amino-5-hydroxy-1,2,3-triazole-4-carbonitrile **4**. The ¹³C NMR spectrum correlates with the cyclic structure of **4**: it contains signals at 101.8 and 153.4 ppm, corresponding to the 4-C and 5-C atoms of 5-hydroxytriazoles.⁴

As in the case of diazomalonamides,⁵ cyclisation of compound **3** is accelerated by the addition of bases, and the use of sodium ethylate leads to the formation of sodium 1-benzylidene-amino-4-cyano-1,2,3-triazol-5-olate **5**. The interaction of **5** with hydrazine results in the removal of benzylidene protection and formation of sodium 1-amino-5-cyano-1,2,3-triazol-5-olate **6**. Upon addition of HCl (1 mol) to an aqueous solution of compound **6**, 2-cyano-2-diazoacethydrazide **8** is formed as a

result of ring opening in a presumed intermediate, 1-amino-5-hydroxy-1,2,3-triazole-4-carbonitrile 7. Thus, we have synthesised the first example of 2-diazomalonohydrazides.

To synthesise 2-ethoxycarbonyl and 2-methylcarbamoyl derivatives of 2-diazoacethydrazide, we studied the interaction of hydrazones of 2-ethoxycarbonyl- and 2-methylcarbamoylacethydrazides **9** and **10** with tosyl azide in the presence of sodium ethylate ('diazo group transfer' reaction).⁶ This reaction was found to result in the formation of sodium salts of 5-hydroxytriazoles **11** and **12**, but not of the expected 2-diazomalonohydrazones.

It is noteworthy that one could expect formation of two isomeric triazoles 12 and 17 in the reaction of methylcarbamoyl derivatives 10 with TsN₃ *via* cyclisation of the intermediate diazo compounds at the amide or hydrazide groups. It was found that this reaction yields only isomers 12; *i.e.*, only heterocyclisation with the participation of diazo and hydrazide fragments is realised. Treatment of 1-benzylideneamino-1,2,3-triazoles 11 and 12 with hydrazine leads to high yields of 1-amino-1,2,3-triazol-5-olates 13 and 14.

As in the case of compound 6, diazohydrazides 15 and 16, which are chain isomers of 5-hydroxy-1,2,3-triazoles, are formed in the reaction of sodium salts 13 and 14 with hydrochloric acid.

Thus, we have synthesised the first examples of 2-diazo-acethydrazides **8**, **15** and **16**, and the products of their cyclisation: derivatives of 1-amino-5-hydroxy-1,2,3-triazoles **4–6** and **11–14**.† All new compounds have satisfactory elemental analyses, IR and NMR spectroscopic data.

This work was supported by the Russian Foundation for Basic Research (grant no. 98-03-33045a).

Scheme 2 Reagents and conditions: i, TsN_3 , EtOH, EtONa; ii, EtOH, H_2NNH_2 , 78 °C.

^b Laboratory of Organic Synthesis, Department of Chemistry, B-3001 Heverlee (Leuven), Belgium

References

1 H. Wamhoff, in *Comprehensive Heterocyclic Chemistry*, eds. A. R. Katritzky and C. W. Rees, Pergamon Press, Oxford, 1984, vol. 5, ch. 4.11, p. 350.

[†] The ¹H and ¹³C NMR spectra were recorded in [²H₆]DMSO solution with a Bruker WH-250 spectrometer at 250 MHz, and the IR spectra were recorded in KBr using a UR-20 spectrometer.

Synthesis of 3 and 4. A solution of amine 2 (4 g, 0.02 mol) in 12 ml of glacial acetic acid at 10-15 °C was treated with butyl nitrite (2.65 g, 0.025 mol). After stirring for 1 h, the precipitate 3 was filtered off. Recrystallisation of 3 from MeCN gives triazole 4. Yield 2.22 g (52%), mp 162-164 °C (CAUTION! Explosive). ¹H NMR δ : 9.31 (s, 1H, N=CH), 12.31 (s, 1H, OH).

Synthesis of 5. Compound 5 was obtained by treatment of 4 with an equimolar quantity of sodium ethylate in absolute ethanol with subsequent precipitation from diethyl ether. Yield 91%, mp 322–324 °C. ¹H NMR δ: 9.32 (s, 1H, N=CH).

Synthesis of 11 and 12 was performed by a 'diazo group transfer' method.⁶

For 11: yield 72%, mp 225 °C (from EtOH, decomp.). 1 H NMR δ : 9.29 (s, 1H, N=CH), 4.15 (m, 2H, OCH₂, J 6.9 Hz), 1.25 (m, 3H, Me, J 6.9 Hz).

For **12**: yield 93.7%, mp 240–245 °C (decomp.). ¹H NMR δ : 9.33 (s, 1H, N=CH), 7.89 (m, 1H, NH, J 4.8 Hz), 2.75 (d, 3H, NMe, J 4.8 Hz).

General method for the preparation of **6**, **13** and **14**. Compounds **5**, **11** or **12**, respectively (2 mmol) were mixed with dry ethanol (8 ml) and hydrazine (100%, 2 mmol) and refluxed for 12 h. The product was filtered and washed with ethanol.

For 6: yield 46%, mp 285 °C (decomp.).

For 13: yield 65%, mp 170–200°C (decomp.). ¹H NMR δ : 5.25 (br. s, 2H, NH₂), 4.13 (q, 2H, CH₂, J 7.0 Hz), 1.23 (t, 3H, J 7.0 Hz).

For **14**: yield 90%, mp 300–305 °C. ¹H NMR δ : 7.86 (q, 1H, CONH, J 4.6 Hz), 5.30 (s, 2H, NH₂), 2.72 (d, 3H, Me, J 4.6 Hz).

General method for the preparation of **8**, **15** and **16**. An aqueous solution of **6**, **13** or **14** was mixed with 1 equiv. of HCl. After evaporation of **8** and **15** solutions *in vacuo* to dryness the residue was extracted with ethanol. The product **16** was separated by filtration.

For **8**: yield 50%, mp 140 °C (decomp.). IR (ν /cm⁻¹): 2150 (N₂), 2250 (CN).

For **15**: yield 55%, mp 157–160 °C. ¹H NMR δ : 9.94 (br. s, 1H, NH), 5.5–7.5 (br. s, 2H, NH₂) 4.28 and 4.23 (2q, 2H, CH₂, J 7.2 Hz), 1.27 (t, 3H, Me, J 7.2 Hz). IR (ν /cm⁻¹): 2145 (N₂).

For **16**: yield 47%, mp 200–203 °C (decomp.). ¹H NMR δ : 7.87 (br. s, 1H, NH), 4.25 (br. s, 2H, NH₂), 2.75 (d, 3H, Me, J 4.0 Hz). IR (ν /cm⁻¹): 2115 (N₂).

- 2 V. A. Bakulev, C. O. Kappe and A. Pavda, in *Organic Synthesis: Theory and Applications*, JAI Press Inc., Greenwich, London, 1996, vol. 3, pp. 149–229.
- 3 M. Yu. Kolobov, V. A. Bakulev, V. C. Mokrushin and A. T. Lebedev, Khim. Geterotsikl. Soedin., 1987, 1503 [Chem. Heterocycl. Compd. (Engl. Transl.), 1987, 1202].
- 4 G. L'Abbe, P. Delbeke, G. V. Essche, I. Luyten, K. Vercautern and S. Toppet, *Bull. Soc. Chim. Belg.*, 1990, **90**, 1007.
- 5 V. A. Bakulev, Yu. Yu. Morzherin, A. T. Lebedev, E. F. Dankova, M. Yu. Kolobov and Yu. M. Shafran, Bull. Soc. Chim. Belg., 1993, 102, 493.
- 6 M. Regitz, *Diazoalkane: Eigenschaften und Synthesen*, Thieme, Stuttgart, 1977, p. 45 (in German).

Received: Moscow, 4th August 1998 Cambridge, 10th September 1998; Com. 8/06231E